Class groups and local indecomposability for non-CM forms
نویسندگان
چکیده
In the late 1990s, R. Coleman and Greenberg (independently) asked for a global property characterizing those $p$-ordinary cuspidal eigenforms whose associated Galois representation becomes decomposable upon restriction to decomposition group at $p$. It is expected that such are precisely with complex multiplication. this paper, we study Coleman–Greenberg’s question using deformation theory. particular, which congruent one multiplication, prove conjectured answer follows from $p$-indivisibility of certain class group.
منابع مشابه
Indecomposability for differential algebraic groups
We study a notion of indecomposability in differential algebraic groups which is inspired by both model theory and differential algebra. After establishing some basic definitions and results, we prove an indecomposability theorem for differential algebraic groups. The theorem establishes a sufficient criterion for the subgroup of a differential algebraic group generated by an infinite family of...
متن کاملcommuting and non -commuting graphs of finit groups
فرض کنیمg یک گروه غیر آبلی متناهی باشد . گراف جابجایی g که با نماد نمایش داده می شود ،گرافی است ساده با مجموعه رئوس که در آن دو راس با یک یال به هم وصل می شوند اگر و تنها اگر . مکمل گراف جابجایی g راگراف نا جابجایی g می نامیم.و با نماد نشان می دهیم. گرافهای جابجایی و ناجابجایی یک گروه متناهی ،اولین بار توسطاردوش1 مطرح گردید ،ولی در سالهای اخیر به طور مفصل در مورد بحث و بررسی قرار گرفتند . در ،م...
15 صفحه اولOn local gamma factors for orthogonal groups and unitary groups
In this paper, we find a relation between the proportionality factors which arise from the functional equations of two families of local Rankin-Selberg convolutions for irreducible admissible representations of orthogonal groups, or unitary groups. One family is that of local integrals of the doubling method, and the other family is that of local integrals expressed in terms of sph...
متن کاملThe field descent and class groups of CM -fields
We consider the following “field descent problem” for principal ideals I of number fields K. Assume that I is invariant under a Galois automorphism σ of K; decide wether there is a generator g of I with gσ = g, i.e., wether I can be generated by an element of Fix σ. We solve this problem for certain ideals by elementary methods. As a consequence, we are able to exhibit large explicit subgroups ...
متن کاملLocal Indecomposability of Hilbert Modular Galois Representations
We prove the indecomposability of the Galois representation restricted to the p-decomposition group attached to a non CM nearly p-ordinary weight two Hilbert modular form over a totally real field F under the assumption that either the degree of F over Q is odd or the automorphic representation attached to the Hilbert modular form is square integrable at some finite place of F .
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the European Mathematical Society
سال: 2021
ISSN: ['1435-9855', '1435-9863']
DOI: https://doi.org/10.4171/jems/1107